\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let S be a surface parametrized by

$$
x(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+v u^{2}, u^{2}-v^{2}\right) .
$$

Compute the second fundamental form, the Gaussian curvature, the mean curvature and the principle curvatures.
2. Let M be the Möbius strip parametrized by

$$
x(u, v)=\left(\left(2-v \sin \left(\frac{u}{2}\right)\right) \sin u,\left(2-v \sin \left(\frac{u}{2}\right)\right) \cos u, v \cos \left(\frac{u}{2}\right)\right) .
$$

Compute the second fundamental form, the Gaussian curvature, the mean curvature and the principle curvatures.
3. A diffeomorphism $\varphi: S \rightarrow \tilde{S}$ is said to be area-preserving if the area of any region $R \subseteq S$ is equal to the area of $\varphi(R)$. Prove that if φ is area-preserving and conformal, then φ is an isometry.
4. Let S_{1} and S_{2} be regular surfaces. Prove that if $\varphi: S_{1} \rightarrow S_{2}$ is an isometry, then $\varphi^{-1}: S_{2} \rightarrow S_{1}$ is also an isometry.
5. Let S be a surface of revolution parametrized by

$$
x(u, v)=(\varphi(v) \cos u, \varphi(v) \sin u, \psi(v))
$$

for $0<u<2 \pi, a<v<b$ and $\varphi>0$. Compute the Christoffel symbols.
6. Compute the Christoffel symbols for an open set of the plane in Cartesian coordinates.
7. Let T^{2} be the torus. Describe the Gauss map of T^{2} and prove that

$$
\iint_{T} K d \sigma=0 .
$$

8. Let Γ_{1} and Γ_{2} be two simple closed geodesics on a compact connected surface S of positive curvature. Prove that Γ_{1} and Γ_{2} must intersect.
